Week 1 Lecture 2: Random variables and distribution functions

EDS 222: Statistics for Environmental Data Science

Two distributions

Today's agenda

- → Parameters, PMFs, and PDFs
- → Families of random variables
- → Simulating data

Today's agenda

- → Parameters, PMFs, and PDFs
- → Families of random variables
- → Simulating data

How many heads?

If I flip a coin 10 times, how many heads would I expect?

Would seeing 10 tails mean the coin is unfair?

Say hello to binomial

Binomial variables describe:

Say hello to binomial

Binomial PMF

How many jellybeans Hi-chew in the jar?

Photo: The Wizard's Shop

How many jellybeans Hi-chew in the jar?

Say hello to normal

Normal variables describe:

Normal PDF

Binomial PMF vs normal PDF

Probability with jellybean PDF

Parameters, PMF, PDF recap

Random variables and populations

How to plot PMFs and PDFs

Today's agenda

- → Parameters, PMFs, and PDFs
- → Families of random variables
- → Simulating data

Families of random variables

- → Form groups of four
- → Each group member learns a puzzle piece individually
- → Assemble the jigsaw!

Poisson distribution [dpois()]

Poisson variables describe:

The number of events in a fixed window

The notation is:

Poisson(λ)

How does the parameter control the shape of the distribution?

- Number of invasive plants observed along a transect
- → Number of hurricanes in the month of November
- → Number of homes with solar panels installed on a block

Geometric distribution [dgeom()]

Geometric variables describe:

The number of trials before a success

The parameter is:

Geometric(p)

How does the parameter control the shape of the distribution?

- → Number of weeks until a drought ends
- → Number of water samples tested before a toxic chemical found

Gamma distribution [dgamma()]

Gamma variables describe:

Positive continuous variables, such as durations and concentrations

The parameter is:

Gamma(α , λ) [shape, rate]

How do the parameters control the shape of the distribution?

- → Time until wildfire containment
- → Concentration of mercury in a fish
- → Heights of floods

Beta distribution [dbeta()]

Beta variables describe:

Continuous variables between 0 and 1, such as proportions

The parameter is:

Beta (α, β)

How do the parameters control the shape of the distribution?

- → Fraction of algal cover on a coral reef
- Proportion of livestock infected with parasites

Families of random variables

- → Form groups of four
- → Each group member learns a puzzle piece individually
- → Assemble the jigsaw!

Today's agenda

- → Parameters, PMFs, and PDFs
- → Families of random variables
- → Simulating data

d____() and r____() functions

d____() and r____() functions

Recap

Parameters, PMFs, and PDFs

Families of random variables

Simulating data