Week 8 Lecture 1:

Poisson regression
EDS 222: Statistics for Environmental Data Science




California wildfires
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Today’s agenda

-=> Poisson variables
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Examples of Poisson variables
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Characteristics of Poisson variables

e A fixed window. Time, space ... anything else that's a fixed “width”
(e.g., mutations on a chromosome).
e |ndependent events happening at a fixed rate. Customers arriving,
stars being born, species observed on a transect.
e One parameter: A.
o The expected value of Poisson(A) is A.
o The standard deviation of Poisson(A) is sqrt(A).
o A controls BOTH mean and variance.
e |f A varies across windows (e.g., events happen in clusters),
Poisson is too restrictive. Use negative binomial instead. Option
for the final project!



Poisson PMFs
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You created these PMFs before
class

Think about what each might
represent. What events could be
happening? What's the “size” of the
window?

Take a minute to think on your own,
then discuss with a peer.
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Poisson statistical notation

CountOutcome ~ Poisson(\)
log(\) = By + B1Predictor
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Comparing link functions
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W ildfire occurrence

Jessica Christian / The Chronicle
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Model notation

Wildfires ~ Poisson(\)
log(A\) = Bo + B1Summer VPD
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Available data
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Available data
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Model summary

> summary(fire_mod_pois)

Call:
glm(formula = n_fires ~ mean_vpd_kpa, family =
poisson(link = "log"),

data = wildfire_weather)

Coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -0.4550 0.6138 -0.741 0.458
mean_vpd_kpa 1.1851 0.2640 4.490 7.13e-06 **%*

17



Visualized predictions

N w P
o o o
L L L

Fires >10k acres (n)

—_—
(@)
L

1.9 21 23
Mean VPD (kPa)

18



Overdispersion

2007

40 -
e Year
n
@ 30
& . 2020
x o ® 2010
T 207 N | 2000
@ . 1990
L 101

0.

1.9 2.1 23 25
Mean VPD (kPa)



Recap

e Poisson variables describe counts.
o One parameter, A. The mean of the distribution is A.
e Poisson regression uses log() for the link function.
e Predictions, Cls, and p-values should be interpreted as with other
GLMs (e.g., logistic).
o For distributions of the response variable, mean = 25D no
longer applies. Use quantiles (qpois()) instead.
e A controls both mean AND variance, so Poisson is often too
restrictive for real data.
o Negative binomial is often a better alternative and an option
for your final project.
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